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A physical model of the dynamics of the formation and separation of bubbles during 
the discharge of vapor into an underheated liquid is discussed. Different regimes 
of formation of vapor bubbles in a liquid layer are discovered. The results of the 
analytic investigation are in satisfactory agreement with experimental data. 

The volumetric gas (vapor) content and the area of the phase interface serve as the main 
characteristics of a two-phas~ bubbling layer. When the thickness of the layer is relatively 
small, they depend on the rate of growth of bubbles from the opening, their separation size, 
and the separation frequency. Various relations [1-6] and generalizing functions [7-10], 
which are in satisfactory agreement with test data, have been proposed for calculating the 
separation sizes of gas bubbles. The assumption that the inertial force of the liquid, due 
to the time variation of the radial velocity of growth of the bubble surface, is propor- 
tional to the volume of the bubble that forms was used in the derivation of a general function 
in [7]. In contrast to gas bubbles, the surface of a vapor bubble pulsates during condensation 
in an underheated liquid. The frequency of these pulsations grows while the amplitude 
decreases with an increase in the velocity of vapor discharge fromthe opening and in the 
amount of underheating of the liquid below the saturation temperature [11-15]. The mechanism 
of development of the pulsations is still insufficiently clear. They point to the radical 
difference between the processes of formation of vapor and gas bubbles, however. The latter 
is also confirmed in a comparison of the relations for determining the separation sizes of 
gas and vapor bubbles, containing different determiningparameters and complexes [7, 16]. 
The available empirical recommendations [16, 17] for thecaiculation of vapor bubbles are 
restricted by the experimental conditions, not having sufficiently clear and physically 
justified limits of application, and they cannot pretend to extensive use in practical 
calculation. 

In the analysis of equilibrium gas bubbles one usually assumes that at the instant of 
separation from an opening, a bubble is under the action of the following main forces [7]: 

buoyant force 

F ~  = ~ d  3 (~ '  - -  ~") /6 ,  

surface tension 

F o. ~_ ~de(Y , 

hydrodynamic gas pressure 

,,7.@2 ~ . 2  F v ~ ?  ~ a~/4g 

and the inertial force of the liquid 

F i =  d(mu)/d~. 

High-speed photography of the separation of a vapor bubble in an underheated liquid [12, 
13, 17] showed that, just as for gas bubbles, an inertial effect in the rear zone, due to 
the closure of the surface of the bubble after it separates from the connecting column [8], 
is clearly recorded (Fig. i), so that in the analysis of the equilibrium of a condensing 
vapor bubble the inertial force of the liquid was retained in the system of acting forces. 
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Fig. i. Photograph of the separation of a vapor bubble 
in an underheated liquid; d c = 0.003 m, h = 0.09 m, w c = 
40 m/sec, AT = II.5~ 
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Fig. 2. Stages in the dynamics of a Condensing vapor bubble: i) 
bubble boundary before the start of condensation; 2) interlayer of 
condensate; 3) liquid streamlines. 

In contrast to gas bubbles, however, the condensation process also hinders the growth of a 
vapor bubble in an underheated liquid. The available experimental data allow us to propose 
the existence of three main stages in the dynamics of a vapor bubble. The appearance in 
the layer of a bubble with a size dependent on the counteraction of the forces of surface 
tension of the liquid and of the hydrodynamic pressure of the vapor belongs to the first 
stage (Fig. 2a). The formation at the interface of a thickening interlayer of condensate 
and a corresponding decrease in the size of the bubble occur in the second stage during 
heat transfer from the vapor through the bubble surface to the liquid (Fig. 2b). In the 
third stage, the layer of condensate reaches a thickness at which the intensity of heat 
transfer from the vapor through this layer to the liquid is insufficient to compensate 
for the hydrodynamic pressure of the vapor, and the size of the bubble increases again. 
In the process, the interlayer of "hot" condensate is forced back into the interior of the 
liquid by the forming bubble, while its place is taken by underheated liquid, and the 
condensation process resumes (Fig. 2c). The repetition of these stages results in the 
visible pattern of pulsations of the bubble surface. The irregularity of the pulsations, 
characteristic in the condensation of bubbles in a noncirculating confined volume of liquid 
[12, 13], is explained by the disturbance in the uniformity of the temperature fields in 
the liquid by intense mixing. 
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Fig. 3. Comparison of experimental (points) and calculated (curves) 
values of the separation diameter of a vapor bubble: d c = 0.003 m: 
i) M' = 0.i kg, h = 0.075 m; 2) M' = 0.2, h = 0.045; 3) M' = 0.15, 
h = 0.035; d c = 0.002: 4) M' = 0.35, h = 0.075; 5) M' = 0.46, h = 
0.09; 6) d c = 0.006, M' = 0.46, h = 0.09; 7) d c = 0.0103, M' = 0.46, 
h = 0.09; 8) calculation from empirical formula of [16]; 9, i0) from 

Eq. (9) with ek = 1.0 and ek = 8.0. d, m; AT, ~ 

TABLE i. Comparison of Analytic and Experimental Equations 
for Different Gas-Liquid Systems 

Gas-liquid system 

Air--ethyl alcohol (CIHsOH) 
~ir-benzene (C8H6) 
it-carbon tetrachloride 
(dC[4) 

Air-water (H~O) 

d from Eq. (I0) d from Eq. (Ii) 
A T  K 

lO 60  

0,00269 0,00293 
0,00287 0,00310 

0,00240 0,00262 
0,00416 0,00433 

10 6 0  

0,00175 0,00152 
0,00136 0,00126 

0,00083 0,00071 
0,00116 0,00120 

~V �9 cor- 
cection 
factor A 

1,7 
2,3 

3,2 
3,7 

With allowance for the retarding effect of the interlayer of condensate, the mass of 
liquid set into motion during the formation of a bubble is taken as proportional to the 
volume of the bubble, 

4nero R 3 7 ,  ' 
m - -  3eh (i) 

The radial velocity of decrease in the surface of the condensing vapor bubble is determined 
from the relation [17] 

dR -- 2 y'cp 
u ~  d ~ -  ~,"r \ R / (2) 

With allowance for (i) and (2), the expression for the inertial force of the liquid during 
condensation of the bubble has the form 

F i ~ 4 Sm d ?'3c'~"AT'~ a'u". 
(3) 
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We write the equilibrium equation for the instant of separation of the bubble with y" << y', 

~d~ 8,~, d "~'3c'/'AT~ ~d~ 3 ~?, q_ ?,,~2 -- adea q- 4 a'u" (4) 
6 4g 8h g ?"~r ~ 

or, after certain transformations, 

3 ~" ~t 3 -~n  Fr - -  6nWe :- 24 e.~ 13 [' ~,' ) 2K  -2 a'u" 
2 7' eh \ ?. ) gd 2 (5) 

From Eq. (5) it follows that it is possible for different regimes to exist in the forma- 
tion of vapor bubbles in an underheated li~lid. For the region of relatively low Froude 
numbers, the separation size of a bubble is determined by the Weber number and by a complex 
characterizing the intensity of vapor condensation (static regime). In the other limiting 
case, when the Froude number is high enough, a dynamic regime sets in when the separation 
size of the bubble depends on the Froude number and a complex of the condensation intensity. 
Between these limiting regimes there is a transitional regime(with the separation and 
motion of bubbles in the layer), when the separation is controlled by the entire system of 
forces acting on the bubble, while its separation size is determined by the values of the 
Weber and Froude numbers and thecomplex of condensation intensity. Neglecting the buoyant 
force in the transitional regime, the relative separation diameter of a bubble was deter- 
mined in accordance with (5) from the equation 

do = t 2 - ~ - ~ T - - !  k a'u----~'/L ~, 2 v' Fr--6We (6) 

In tests it was found that the onset of the transitional regime for vapor bubbles 
corresponds to the jet regime of gas dispersion into a liquid, a condition of which is the 
rising of bubbles in the layer in a chain. In this regime the separation diameter of gas 
bubbles is determined by the relation [2, 3] 

(7) 

In [7] it was found that for air and nitrogen bubbles in water and methanol, the co- 
efficient Sm equals 32. Tests [17] showed that the rise velocity u" of vapor bubbles does 
not differ significantly from the velocity determined from the function for gas bubbles 
obtained in [18], 

o2g ~ )o,2 
u" = (. 3 ~ ' 7 '  

(8) 

Because of the absence of enough reliable data on the rise velocity of vapor bubbles, it 
was determined from the function (8). 

With allowance for (7) and the experimental value of Sm' we represent Eqo (6) in the 
form 

d _11.o .1o_ . OWel] . (9) 
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Equation (9) contains the proportionality factor Sk' which is also needed for determining 
the region of existence of each regime of condensation. We do not know the values of the co- 
efficient c k or the methods of determining it. To estimate it, we used our own and the 
literature test data on the separation sizes of vapor bubbles in noncirculating underheated 
water [16, 19]. In Fig. 3 we present values of the separation diameter of a vapor bubble as 
a function of the degree of underheating of the water, obtained for d c = 0.002-0.01 m, w c = 
30-50 m/sec, and y'/y" = 1430 in the tests of [19]. As can be seen from the figure, the test 
data are satisfactorily generalized both by an empirical formula obtained in [16] for d c = 
0.003 m and by Eq. (9) with the values of ~k = 8.0, d c = 0.003 m, and w c = 40 m/sec. 

The coefficient obtained remains valid in the static and transitional regimes of con- 
densation. In the dynamic regime (AT < 10~ Eq. (9) with e k = 8.0 yields results 10-15% 
higher than curve 8. The latter is explained by the decrease in the intensity of vapor con- 
densation and the decrease in the retarding effect of the interlayer of condensate in this 
regime. It is better to take the coefficient s k as 7.0 in this regime. Curve 9 in Fig. 3 
was obtained from Eq. (9) with e k = 1.0. It is possible to neglect the influence of the re- 
tarding effect of the interlayer for all the regimes only when the velocity of motion of 
the bubbles in the layer exceeds the velocity of their condensation. We know of no experi- 
mental data for this case, however. It is also interesting to determine the applicability 
of Eq. (9) to various gas--liquid systems without condensation. For this purpose we transform 
Eq, (9): The condensation criterion is eliminated, the coefficient e k is taken as 1.0, and 
a correction factor A is introduced: 

d _A{l.95.10-s(~"h2( gwcdc )[ < 3~ W~T, Fr--6We)]}[/s. 
dc \ ?' ] \ a'u "~ 2 

(lO) 

We compared Eq. (i0) with the empirical formula [8] 

d 1 . 1 1 - - 1 2 2  Y' - -  ~/' _-77AT~ 2 , 
4 l vR ; (ii) 

obtained in systems of air and water, ethyl alcohol, benzene, nitrobenzene' and carbon 
tetrachloride. 

The calculations from (i0) and (ii) were made for P = 0.i MPa, AT = IO-60~ d c = 0.003 
m, w c = 40 m/sec, and y" = 0.946 kg/m s and the values of u ~, a', and ~' characteristic 
for each liquid [20]. It was found that the influence of AT on d is negligibly small, while 
the error of averaging d in a narrow range of AT for each liquid does not exceed • 10% (see 
Table i). Satisfactory agreement with (ii) was achieved for values of the correction factor 
A in (i0) of 1.7-3.7 (depending on the properties of the liquids). 

On the basis of the foregoing, we can condlude that Eq. (9), obtained on the basis of 
the proposed physical model of condensation, correctly reflects, in the main, the character 
of the dependence sought in the entire necessary range of the determining parameters and for 
different vapor(gas)--liquid systems. 

NOTATION 

d, separation diameter of a bubble; y', y", specific weight of the liquid and vapor 
(gas); dc, diameter of the opening; o, surface-tension coefficient of the liquid; Wc, velocity 
of discharge of the vapor (gas) from the opening; g, acceleration of gravity; m, mass of 
liquid, the motion of which is dependent on the radial velocity of bubble growth; u, radial 
velocity of growth of the bubble surface; T, time; Sm, Ck, proportionality factors; R, 
separation radius of a bubble; c;, specific heat of the liquid; AT, underheating of the liquid 
below the saturation temperature; r, latent heat of vaporization of the liquid; a', co- 

2 d efficient of thermal diffusivity of the liquid; ~ = d/dc; Fr = w /gd , Frou e number; We = 
o/y'd~, Weber number; K = r/CpAT, condensationcriterion; (y'/y")~K-2~a'u"/gd2), complex 
characterizing the intensity of condensation of the vapor; ~, visoosity coefficient of the 
liquid; Rc, radius of the opening; P, working pressure; h, thickness of the liquid layer 
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above the opening; M', mass of liquid in which the vapor condenses; do, d i, initial diameter 
of a bubble and diameter after completion of the stage of its condensation. 
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